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ENHANCING RAINFALL FORECASTING ACCURACY: A
COMPARATIVE STUDY OF ARIMA, ANN, AND HYBRID
MODELS USING AGRO-CLIMATIC DATA
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ABSTRACT. Agro-climatic data from Pantnagar, spanning the years January 2010
to March 2022, is used in the study to assess the forecasting capabilities of
Auto Regressive Integrated Moving Average (ARIMA), Artificial Neural Net-
works (ANN), and hybrid models. These prediction models were trained and
tested on the dataset, and Mean Squared Error (MSE), Mean Absolute Error
(MAE), and Root Mean Square Error (RMSE) were used to evaluate the mod-
els’ performance. With the lowest MSE and RMSE values, the Long Short-Term
Memory (LSTM) model outperformed the others, demonstrating its ability to
accurately capture the temporal relationships in the rainfall data. Additionally,
the Temporal Long Short-Term Memory Network (TLNN) demonstrated a solid
balance between performance and complexity. Despite being simpler, the Feedfor-
ward Neural Network (FNN) model performed less accurately when handling time
series data. The hybrid model did not perform better than the separate models,
indicating that accuracy may not always be increased by combining ANN predic-
tions with ARIMA residuals.
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1. INTRODUCTION

The primary aim of this paper is to enhance rainfall forecasting accuracy by
comparing ARIMA, ANN, and hybrid models using agri-climatic data. This study
contributes by introducing a comprehensive evaluation of these models, focusing on
their ability to capture linear and non-linear patterns in rainfall data. Through rig-
orous experimentation and performance assessment using RMSE, MSE, and MAE
metrics, the findings provide valuable insights into model effectiveness. While most
studies focus on either traditional statistical models or machine learning techniques,
this paper bridges the gap by investigating hybrid approaches especially the com-
bination of statistical and ANN models, ensuring a more holistic understanding of
rainfall forecasting. The results reinforce the importance of integrating both lin-
ear and non-linear components for improved prediction accuracy, fostering further
research and practical applications in agricultural planning and water resource man-
agement.

Since rain supplies most of the water required to sustain crop production, it is
crucial to the Indian agricultural system. In India’s predominantly rain-fed agricul-
ture, enough and appropriate rainfall is essential for crop success. Accurate rainfall
forecasting is essential for agricultural operations, water resource management, and
disaster preparedness.
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A collection of a variable’s observations arranged chronologically throughout time
is called a time series. In order to create models that try to replicate the basic process
that creates data, time series forecasting makes use of historical observations of the
target variable. These models may then be used to make forecasts for the future.
A lot of work has gone into creating precise time series forecasting models (Zhang,
2003).

ARIMA (Autoregressive Integrated Moving Average) models are among the most
widely used traditional time series models. Their popularity is mostly due to
their statistical properties and the popular Box-Jenkins model-building techniques.
ARIMA models can handle autoregressive (AR), moving average (MA), and non-
stationarity components. Their presumption of linear correlations between previous
data (in the AR) or errors (in the MA) is a major disadvantage, though. As a
result, non-linearity in the data is not captured by ARIMA models. Additionally,
when simulating complicated real-world systems that exhibit non-linear behavior, it
is sometimes impractical to meet the assumptions required by ARIMA models prior
to modeling.

Conversely, non-linearity in the data may be captured using Artificial Neural Net-
works (ANNs). Since they don’t need pre-specifying the model’s structure, they are
a data-driven method suitable for situations where the underlying data-generating
process is ambiguous and complicated.

The challenge of identifying whether an observed time series is the result of a lin-
ear or non-linear data-generating process is the idea behind creating hybrid models.
As a result, forecasters have difficulty selecting the right model for their particular
circumstance. The optimal model is chosen based on performance metrics like ac-
curacy after several models are constructed using the data at hand. This approach
is not perfect, though, due to sample variability, model uncertainty, and potential
structural alterations in the data.

Furthermore, a real-world process is probably a combination of both linear and
non-linear, therefore it is impractical to assume that it is either one or the other. As
a result, combining models that manage linearity and non-linearity to create hybrid
models that can handle both features frequently yields superior results. Results from
a number of research on ARIMA and ANN have been inconsistent (Al-Saba et al.,
1999; Elkateb et al., 1998; Patil, 1990; Tang & Fishwick, 1993; Tang et al., 1991;
Zhang et al., 2001). However, a number of forecasting studies have discovered that
integrated models outperform solo models in terms of accuracy.

Since the famous M contests (Makridakis et al. 1982), it has been observed that
combinations are frequently included in the most accurate predicting models. The
accuracy of these models decreases as the prognosis advances. Clemen (1989) pro-
vided a comprehensive overview of the topic, whereas Reid (1968) and Bates &
Granger (1969) carried out the first studies in this field. Combining several mod-
els makes sense since each one is very good at seeing unique patterns in the data.
Numerous studies have shown how good these integrated techniques are at predict-
ing (Makridakis, 1989; Newbold & Granger, 1974; Palm & Zellner, 1992; Winkler,
1989). This is further supported by recent work by Mathpal et al. (2023), which
highlights the importance of timely and enough rainfall for crop development and
shows the increased accuracy and reliability of ensemble machine learning models for
rainfall forecasting in Indian agriculture. Furthermore, developments in agricultural
automation, like the creation of effective CNN-based image classification models for
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the detection of cabbage weeds (Dibyanshu and Rajput 2024), demonstrate the con-
tinuous advancements in machine learning models to boost agricultural productivity
and efficiency.

A number of combinations have been proposed for neural network forecasting.
Wedding and Cios (1996) have addressed the integration of radial basis function
networks with Box-Jenkins models. Luxhoj et al. (1996) blended artificial neural
networks (ANN) with econometric methodologies for sales forecasting. Addition-
ally, Ginzburg & Horn (1993) used several feedforward neural networks to increase
prediction accuracy.

Although a large body of research has shown that hybrid models often perform
better than individual models, some studies have shown that individual models can
produce outcomes that are on par with or even better than those of hybrid mod-
els. Makridakis et al. (1982) noted that basic exponential smoothing frequently
outperformed more sophisticated techniques, such as hybrid models, during the
first M contests. Individual models, such autoregressive (AR) models, performed
exceptionally well in macroeconomic forecasting, according to Stock and Watson
(1999). Armstrong (2001) observed that in terms of accuracy and usability, simpler,
well-defined individual models often outperformed combination models. In several
datasets, Hyndman & Khandakar (2008) discovered that ARIMA models performed
better than hybrid models. In a similar vein, Zhang (2003) also found cases in which
certain datasets or scenarios demonstrated the superiority of distinct models. Using
the R program, Pant A. & Rajput R.S. (2019) detailed the building of time series
models for predicting the price of gold, with the objective of analyzing historical
price trends and improving forecasting accuracy for financial decision-making.

The paper is organized as follows. In Section 1, we introduce the study and
its objectives. Section 2 presents the methodology, detailing the development of
statistical, ANN, and hybrid models. Section 3 discusses the results and provides
an in-depth analysis. Finally, Section 4 concludes the study and outlines potential
directions for future research.

2. METHODOLOGY

Study Area: The study’s primary emphasis was Pantnagar, which is situated
in Uttarakhand, India’s Kumaon area. Geographically, Pantnagar is located in
latitude 29.021038N and longitude 79.489738E, encompassing an area of around
51 square kilometers. The South West monsoon season, which runs from July to
September, is when the region receives the majority of its rainfall. In Pantnagar,
winter temperatures may drop as low as 8°C and rise as high as 15°C, while summer
temperatures can range as low as 26°C and as high as 46°C.

Data Source: We used daily agri-climatic data from the NASA POWER data-
base for our study in Pantnagar, Uttarakhand, India. The National Aeronautics and
Space Administration (NASA) is a pioneer in Earth Science research, supporting
satellite systems and conducting studies that provide critical data for understand-
ing climate and climatic processes. NASA’s Earth Science research program has
made important datasets that are necessary for researching and evaluating different
climatic aspects accessible.

Python: Python is now widely used in software development as a flexible pro-
gramming language. Because of its widely recognized readability, ease of use, and
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extensive library support, it is a popular choice for developing a wide range of appli-
cations. Python is an open-source, high-level language known for its elegant syntax,
which emphasizes code readability and simplicity. This characteristic enables de-
velopers to convey ideas and concepts using fewer lines of code compared to other
languages, catering to both beginners and seasoned programmers alike. Addition-
ally, Python boasts various specialized libraries such as NumPy for multidimensional
arrays and numerical computations, OpenCV (cv2) for image manipulation, and
Matplotlib for creating diverse plots and visualizations. Google Colab is employed
for coding, debugging, and execution.

Autoregressive Integrated Moving Average (ARIMA) model: The future
value of a variable is shown as a linear function of several past observations and
random errors in an autoregressive integrated moving average (ARIMA) model.
The underlying process that generates the time series is expressed as follows (Box
et al., 2015):

(1) Yo = O1Yi—1 + PoYy—2 + - + Opyi—p + o€y + 01641 + - - + 0464

The actual value and random error at time-period ¢ are denoted by 1y and €,
respectively. The model parameters are the coefficients ¢; (for i = 1,2,...,p) and
0; (for j = 0,1,2,...,q), where p and ¢ are integers that are referred to as the
model’s orders. With a mean of zero and a fixed variance o2, it is assumed that
the random errors ¢; are independently and identically distributed. This equation
contains several important special instances in the ARIMA family of models. It
reduces to a moving average (MA) model of order ¢ if p = 0, and to an autoregressive
(AR) model of order p if ¢ = 0. One of the most important steps in creating an
ARIMA model is determining the appropriate model order (p, q).

Box and Jenkins’s useful approach to creating ARIMA models, which was devel-
oped on Yule’s 1926 work, has immensely improved time series analysis and fore-
casting applications. The Box-Jenkins approach consists of three iterative steps:
diagnostic checking, parameter estimation, and model identification.

The fundamental idea behind model identification is that a time series should
have specific theoretical autocorrelation properties if it is the outcome of an ARIMA
process. One or more viable models for the given time series are frequently revealed
by comparing the theoretical and real autocorrelation patterns. The autocorrelation
function (ACF) and partial autocorrelation function (PACF) of the sample data are
the main tools for this aim, according to Box and Jenkins.

To develop an appropriate ARIMA model for forecasting, stationarity must typ-
ically be achieved in the identification stage, which calls for data processing. The
mean and autocorrelation structure of a stationary time series remain constant across
time. Before fitting an ARIMA model, differencing and power transformations are
frequently used to remove trends and stabilize variance in time series that show
heteroscedasticity and trends.

Once a rough model is established, estimating the model parameters is simple.
Through parameter estimation, an overall measure of errors may be minimized via
a nonlinear optimization procedure.

Artificial Neural Network (ANN): An efficient method for solving a variety
of nonlinear issues is the use of artificial neural networks, or ANNs. The capacity
of ANNs to properly represent a broad range of functions makes them valuable as
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universal approximators, which is one of their primary advantages. This adaptability
stems from their capacity to handle data in parallel. In contrast to conventional
models, an ANN does not rely on preset model assumptions; instead, its network
topology is dictated by the data itself.

Three layers of processing units connected by acyclic linkages make up a single
hidden layer, a common feedforward network for time series forecasting. The output
y¢ relates to the inputs (ye—1,¥i—2, ..., Yi—p) through the equation.

q P
(2) v =00+ Y ajg (ﬂoa‘ +> Bijyt—z) +e
j=1 i=1
In equation 2, a; and 3;; are connection weights, with p input nodes and g hidden
nodes. The logistic function, g(z) = m, is typically used as the hidden layer
transfer function. This ANN model achieves nonlinear mapping from past values to
the future value (y;):

(3) Y= fW—1:Y—2, - Y—p; W) + &

Even though its structure is simple, this model works as a nonlinear autoregressive
model, often with a single output node for one-step-ahead forecasting, and is quite
successful. Where W comprises all parameters and f is specified by the network
topology and weights.

When the network structure (p,q) is given, the network is trained to estimate
parameters. Parameter optimization aims to lower the mean squared error, just like
ARIMA models do. The generalized reduced gradient (GRG2) and other advanced
nonlinear optimization techniques that go beyond basic backpropagation are used
to achieve this.

Hybrid Method: We can decompose time series data into two components: a
linear trend (L) and a non-linear component (N;), expressed as

(4) Yt = Lt + Nt
Initially, the ARIMA model is employed to capture the linear trend. The residuals

(5) et =y — Ly

Which represent the non-linear component not accounted for by ARIMA, can
then be used for further modeling. An artificial neural network (ANN) is applied to
these residuals, with n input nodes, to model the non-linear dynamics:

(6) et = fle—1,€—2,...,e1—n) + €

Where f denotes a neural network-derived non-linear function and ¢; represents
random error. The combined forecast is derived as

(7) O = i/t + Nt

reflecting a hybrid approach involving two main steps: (1) modeling the linear
component using ARIMA | and (2) modeling the residual non-linear component using
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ANN. This method enables separate modeling and integration of linear and non-
linear components in time series forecasting.

All models were trained and tested on monthly rainfall data of Pantnagar, ob-
tained from NASA POWER, Monthly data on rainfall was split into approximately
79% training data and 21% testing data. The optimal ARIMA model was selected
based on the minimum AIC value, while the parameters for ANN models (FNN,
TLNN, LSTM) were determined using the grid search method. Further details on
model performance are discussed in the Results section .

RESULTS AND DISCUSSION

ARIMA Model: The ARIMA model was applied to monthly rainfall data of
Pantnagar for the period January 2010 to March 2022 (Fig.1)
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F1GURE 1. Monthly rainfall data of Pantnagar from January 2010
to March 2022

The dataset was divided into a training set (before the previous 30 months) and
a test set (the last 30 months) (Fig 3). Stepwise search is used to minimize the
Akaike Information Criterion (AIC), and the best-fitting ARIMA model was found
to be ARIMA (0, 0, 1) (2, 0, 0) [12] with an intercept term. Table 3 lists a few of
the fitted ARIMA models along with the accompanying AIC values.

TABLE 1. ARIMA Model Performance Metrics

Metric Value
Log Likelihood -374.19
AIC 758.38
Ljung-Box test (L1) p-value 0.77
Jarque-Bera test p-value i 0.001
Mean Squared Error (MSE) 21.29
Root Mean Squared Error (RMSE) | 4.61

With an AIC of 758.38 and a log likelihood of -374.19, the ARIMA (0,0,1)
(2,0,0)[12] model fits the data rather well. The Ljung-Box test (L1) p-value of
0.77 suggests that there is no significant autocorrelation in the residuals, while the
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FIGURE 2. Decomposition of original series into Trend and Seasonal

components
TABLE 2. ARIMA Model Parameters
Parameter Value
Intercept 1.079
Moving Average (MA) coefficient (Lag 1) 0.37
Seasonal Autoregressive (AR) coeflicients (Lags 12 and 24) | 0.25, 0.59
Residual variance (%) 30.31

Jarque-Bera test p-value of less than 0.001 indicates that the residuals are not nor-
mal. With a Mean Squared Error (MSE) of 21.29 and a Root Mean Squared Error
(RMSE) of 4.61, the model’s performance metrics demonstrate its predictive accu-
racy. A prediction for the upcoming three years was generated using this model.

Artificial Neural Network Models Three ANN models- Long Short-Term
Memory (LSTM), Time-Lagged Neural Network (TLNN), and Feedforward Neural
Network (FNN) were trained, implemented, and evaluated using Python on the
same data. Each model was tested with various parameter combinations (Table 4)
and the best-performing configuration was selected (Table 5) based on performance
measure

Fig 5-7 depict the predicted and actual values for the test set corresponding to
each ANN model. The LSTM model demonstrated superior performance compared
to the others based on performance measures.

Hybrid Model: ARIMA residuals and ANN predictions were combined to form
a hybrid model. The best ANN model was trained using the residuals from the
ARIMA model on the training set, and it forecasted residuals for the next 30 months.
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TABLE 3. ARIMA Models with AIC, MAE, MSE, RMSE, MAPE

values
ARIMA Model AIC | MAE | MSE | RMSE | MAPE
ARIMA(0,0,0)(0,0,0 885.00 | 7.85 | 96.07 9.80 42656.1

)L
ARIMA(1,0,0)(1,0,0)[1
ARIMA(0,0,1)(0,0,1)[1
ARIMA(1,0,0)(0,0,1)[1
ARIMA(0,0,0)(1,0,0)[1
ARIMA (2,0 o)(1 0,0)[1
ARIMA(1,0,1)(1,0,0)[1
)L
)L
)L
)L
)L
)L

( 802.54 | 5.65 | 45.99 | 6.78 | 34216.21
(
(
(
0
ARIMA(0,0,1)(1,0,0
(0
(
(
(
(

2
2]

2] 820.84 | 7.52 83.03 9.11 41897.48
2] | 833.86 | 8.95 112.9 10.6 46589.03
2] 813.41 | 4.40 30.78 5.54 24723.62
2] 802.98 | 5.35 44.26 6.65 33216.14
2] | 803.17 | 547 | 44.96 6.70 33649.6
2] 801.61 | 5.15 41.15 6.41 32209.49
2] 821.91 | 8.09 100.0 10.0 43185.22
2] 758.38 | 3.21 21.09 4.61 12114.53
2] 759.64 | 3.20 22.02 4.69 12871.12
2] 759.67 | 3.18 21.81 4.67 12726.49
2] 762.18 | 2.71 19.50 4.41 8995.185

ARIMA(0,0,1)(0,0,0
ARIMA(0,0,2)(0,0,2
ARIMA(1,0,1)(0,2,0
ARIMA(0,0,2)(2,0,0
ARIMA(0,0,1)(2,0,0
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FIGURE 3. Train set(black),Test set(red), Test forecast(green)

TABLE 4. Hybrid Model Performance Metrics

Metric Value
Mean Squared Error (MSE) 21.957
Root Mean Squared Error (RMSE) | 4.686
Mean Absolute Error (MAE) 2.692
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F1GURE 4. ARIMA model forecast for 3 years (2023 to 2025)

TABLE 5. Model Parameters and Performance measures for selected
models

Model | Parameters MSE | RMSE | MAE

LSTM | Look-back: 12, Hidden nodes: 5, Epochs: 50, | 13.877 | 3.725 2.678
Batch size: 1, Future steps: 30
FNN Look-back: 36, Hidden nodes: 5, Output nodes: | 19.981 | 4.470 2.801
1, Epochs: 50, Batch size: 1, Future steps: 30
TLNN | Time-lagged points: [1, 2, 3, 12, 24, 36], Hidden | 17.375 | 4.168 | 2.479
nodes: 5, Output nodes: 1, Epochs: 50, Batch
size: 1, Future steps: 30

These predicted residuals were added to the ARIMA forecasted values to obtain the
final forecast.

Comparison of Models: Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and Mean Absolute Error (MAE) were used to compare the perfor-
mance of the ARIMA, ANN, and hybrid models.

Incorporating advanced rainfall forecasting models, holds significant potential for
enhancing agricultural practices. Accurate rainfall predictions enable farmers to
optimize irrigation scheduling, ensuring efficient water use and potentially reducing
costs. Moreover, precise weather forecasts assist in the timely application of fer-
tilizers and pesticides. Applying these inputs under favorable weather conditions
enhances their effectiveness and minimizes environmental impact. Additionally, ac-
curate rainfall forecasting aids in planning fieldwork activities.
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FIGURE 6. FNN Model: Actual vs Predicted

TABLE 6. Summary of Performance measures of all models

Model | MSE | RMSE | MAE
ARIMA | 21.291 | 4.614 | 3.033
LSTM | 13.877 | 3.725 | 2.678
FNN 19.981 | 4.470 | 2.801
TLNN | 17.375 | 4.168 | 2.479
Hybrid | 21.957 | 4.686 | 2.692

By leveraging such predictive models, agricultural stakeholders can make informed
decisions that enhance productivity, resource management, and sustainability. The
integration of advanced forecasting tools into agricultural practices represents a
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proactive approach to managing weather-related risks and optimizing farm oper-
ations.

Conclusion: The LSTM model demonstrated superior performance, achieving
the lowest MSE and RMSE, making it the most suitable for rainfall prediction in
Pantnagar. TLNN also showed promising results, balancing accuracy and model
complexity. The ARIMA model, though outperformed by ANN models, remains
valuable for understanding underlying trends. The hybrid approach requires further
refinement to enhance predictive performance.

These findings have significant implications for agricultural planning and water
resource management. Future research should explore the integration of climate
indices, soil moisture, and remote sensing data to further enhance model accuracy.
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Additionally, these results can inform policy decisions on sustainable water manage-
ment and early warning systems, contributing to more resilient agricultural practices
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